Boeing 720 – This aircraft may be noteworthy for the spectacular end of its short life with NASA. To test a fuel additive it was hoped would make jet fuel less flammable in a crash, NASA and the FAA teamed up to crash a remotely piloted Boeing 720 airliner. The test aircraft erupted into a fireball on impact, proving the additive wasn’t effective. However, NASA collected a lot of data on crashworthiness during the test. The aircraft was built for Braniff, but not delivered, instead going to the Federal Aviation Administration.
Modeling: 1/144 scale Welsh Models (No. SL 61; vacuum-formed). Otherwise, it is possible to kitbash one in 1/144 scale with parts of Revell and Minicraft 707 kits, or in 1/72 scale with parts from a Heller 707 and AMT’s KC-135. There are no decals available.
Boeing 737-100 – The 737 has been in NASA service since 1974, and has served as a test bed for many advances in aircraft safety, efficiency, and capacity. Initially used to demonstrate the idea of fully electronic instrumentationor “glass cockpit,” in 1974 and 1975, Aircraft 515 was used to test microwave landing systems, precision flare control, profile descent programs, GPS navigation, and other automated systems, many of which have become standard on commercial airliners. One of the most important programs
tested wind-shear sensors; several serious aircraft accidents in the 1970s and ’80s had been attributed to wind shear. The airframe is the first Boeing 737 built and was used by Boeing to qualify the type for airline service. It was based at NASA Langley Research Center until 1997, and is now on display at the Museum of Flight in Seattle.
Modeling: 1/144 scale Airfix Boeing 737-200 would need to be shortened. Decals are available from
Hawkeye Models Australia, (No. NAS-13).
Boeing 747 – This may be one of NASA’s best-known aircraft because they are used to transport the space shuttle. The first, a 747-100 obtained from American Airlines in 1974, was initially used for wake-vortex tests. After modifications at Boeing, the aircraft took on its role as shuttle transport (SCA), starting with approach and landing tests in 1977. The obvious external differences between the SCA and a normal 747 airliner are three struts protruding from the top of the fuselage to which the orbiter is attached, and two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance stability. A second SCA entered service in 1990 after a former Japan Airlines 747SR-200 was converted.
Modeling: Revell produced a 1/144 scale kit of the SCA and space shuttle in the early days of the program. It has been reissued a couple of times, but not recently. Academy has a 1/288 scale kit. Revell and Airfix have early 747s in their catalogs that could be converted to SCA standard.
Boeing 747SP – Known as SOFIA, NASA’s Stratospheric Observatory for Infrared Astronomy uses a modified 747SP fitted with a large infrared telescope in the rear fuselage. A rotating door on the port side of the rear fuselage opens to give the telescope almost 60 degrees of view. The aircraft is in the final stage of testing before starting scientific missions; the goal is to fly three or four nights a week when operational. NASA’s 747SP entered service with Pan American World Airways in 1977, then was sold to United Airlines in 1986. In the mid-1990s, the aircraft flew its last revenue flight before being sold to NASA.
Modeling: Welsh Models produces two kits of the 747SP in 1/144 scale, but they would have to be modified to produce the SOFIA aircraft. I haven’t seen decals for it.
Boeing 757 – NASA used a 757 to continue the airliner testing, evaluation, and research started with the 737. The aircraft, N557NA, the second 757 built was acquired by NASA after Easter Air Lines bankruptcy in 1991. lines. NASA acquired it after Eastern’s bankruptcy.
Modeling: Minicraft recently released a 1/144 scale 757 (No. 14600) with the last scheme worn by Langley’s aircraft. DRAW Decals has markings for the aircraft (No. 44-757-5).
Convair 990 – NASA used several Convair 990s as medium-altitude research aircraft, but the most notable was used to test space-shuttle landing gear and braking systems. Dubbed the Landing Systems Research Aircraft, it was fitted with components of the shuttle’s landing gear between its own main gear bays under the rear fuselage. During tests, the landing gear unit was lowered by a high-pressure hydraulic system after the 990’s main landing gear contacted the runway. The tests allowed engineers to assess and document the performance of the space shuttle's main- and nose-gear systems, tires, and wheel assemblies, along with braking and nose-wheel steering. Built in 1962, the Convair flew revenue service with American Airlines and Modern Air Transport before being acquired by NASA in 1975. After testing, the aircraft was moved to the front gate of Mojave Air and Space Port.
Modeling: Revell, Monogram, and Aurora released box scale kits of the 990 in the 1960s. More recently Welsh released a 1/144 scale multi media kit. I am not aware of any NASA decals for any of these kits.
Douglas DC-8-72 – Part of NASA’s Airborne Science Program, the DC-8 collects data for experiments in support of scientific projects serving the world’s scientific community, including NASA, federal, state, academic and foreign investigators. The jet has been used for studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science, and biology. Among its features are: wing pylons for aerosol sampling; a gyro-stabilized pointing and tracking mirror system; a dropsonde delivery tube; atmospheric chemistry sampling probes; and multiple reinforced ports that accept experiments that can be aimed in virtually any direction. Experiment-support capabilities include weather radar, an integrated navigation management system, a satellite-based time code generator, a stand-alone Global Positioning System, and a weather-satellite receiver system. Built in 1969 as a DC-8-62, the aircraft served with Alitalia and Braniff Airways before being fitted with CFM engines and converted to -72 configuration in 1986, the same year it started service with NASA.
Modeling: Minicraft’s 1/144 scale DC-8s are hard to beat. DRAW Decal has markings for the aircraft (No. 44s-DC-8-8).
Douglas DC-9-33F/C-9B Nightingale – In 2005, this plane replaced KC-135s long-used for weightlessness training as part of the Reduced Gravity Research Program. After a short, steep climb, the aircraft are put into an elliptical trajectory that creates zero gravity for several seconds. Unofficially known as the Vomit Comet, NASA prefers the term Weightless Wonder. The aircraft is also used for Heavy Aircraft Training and as a ferry aircraft for support crews, often accompanying the space-shuttle transporter. NASA’s C-9B started life as a DC-9 with KLM Royal Dutch Airlines in 1970. The airframe was transferred to the U.S. Navy in 1989, then to NASA in 2003. In the mid-1990s, NASA used another DC-9 for weightlessness. That aircraft started life with Trans-Australia Airlines, then flew with Sunworld and Midway, before NASA. The aircraft was destroyed in a crash in Mexico in 1999 while being operated by TAESA.
Modeling: Fly Models, part of MPM, released three 1/144 scale DC-9 kits including one in NASA colors. Airfix and AZ Models also have DC-9-30s. I am not aware of any aftermarket decals.
Other aircraft – Over the years, NASA has been involved in other tests with aircraft manufacturers to develop and test new systems. Among them was a McDonnell-Douglas MD-11 used for Propulsion Control Aircraft tests. The system being tested allowed pilots to land an aircraft by manipulating the engines rather than moving control surfaces. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft’s flight control computers. The PCA concept is simple – for pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left-engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
NASA also conducted the Adaptive Performance Optimization project, designed to reduce the aerodynamic drag of large subsonic transport aircraft by varying the camber of the wing through real-time adjustment of flaps or ailerons in response to changing flight conditions. It was hoped that reducing drag will improve aircraft efficiency and performance, saving for the nation's airlines hundreds of millions of dollars annually. Flights for the NASA experiment were made over several years on a modified Lockheed L-1011 Tristar owned by Orbital Sciences Corp., with all flights flown out of Bakersfield’s Meadows Field in California. The experiment is part of Dryden's Advanced Subsonic Transport Aircraft Research program.
Perhaps the most exotic of NASA’s airliners is the supersonic Tupolev Tu-144, modified for research flights. Using the Tu-144LL to conduct flight experiments allowed researchers to compare full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The flight experiments provided unique aerodynamic, structure, acoustic, and operating environment data on supersonic passenger aircraft. Six flight and two ground experiments were conducted during the program’s first flight phase, which began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving about seven flights began in September, 1998, and concluded in April 1999. All flights were conducted in Russia from Tupolev’s facility at the Zhukovsky Air Development Center near Moscow.